AIT600-SG High Precision Digital Current Transducer

The multi-point zero-flux technology system applied in this high-precision DC transducer combines closed-loop excitation flux control technology, self-excited flux gate technology, and multiple closed loop control technology. The combination of technologies enables zero-flux closed-loop control of excitation flux, DC flux and AC flux, and can detect high-frequency ripple by constructing a high-frequency ripple sensing channel, so that the transducer can achieve high gains and measuring accuracy over the full bandwidth.

Product photo

Key Technologies

- ♦ Self-excited fluxgate technology
- Excitation closed-loop control technology
- ♦ Self-exciting demagnetization technology
- ♦ Multi-point zero-flux technology
- ♦ Temperature control compensation technology
- ♦ Multi-range automatic switching technology

Features

- ♦ Excellent linearity and accuracy
- ♦ Excellent linearity: <2PPM</p>
- ♦ Extreme low temperature parameter: 0.1ppm/K
- With saturation detection and self-recovery
- ⇔ Extremely low zero drift
- ♦ Extremely low temperature drift
- ♦ Strong anti-electromagnetic interference

Application Domain

- ♦ Smart grid
- ♦ DC test system
- ♦ Railway transportation
- ♦ Test instrumentation

- ♦ New energy electric vehicle
- ♦ Magnetic resonance imaging (MRI) unit
- ♦ Medical equipment
- ♦ Special power supply

Electrical Performance

Parameter	Symbol	Measuring Conditions	Min	Тур	Max	Unit
Primary nominal direct current	I _{PN_DC}	_	_	±600	_	Adc
Primary nominal alternating	I _{PN}	_	_	424	_	Aac
current*						
Primary overload current	I PM	1 Minute	_	_	±900	Adc
Operating Voltage	Vc	-	±14.2	±15	±15.8	V
Power consumption current	I_{PWR}	Rated primary current	±30	±430	±630	mA
Current ratio	K_N	Input : Output	1500:1	1500:1	1500:1	_
Rated output current	I _{SN}	Rated Primary current	_	±0.4	_	Α
Measuring resistance	Rм	See Fig. 1	0	2.5	5	Ω

^{*} refers to AC effective value

Telephone: 0755-82593440 Website: www.hangzhicn.cn

Accuracy Measurement

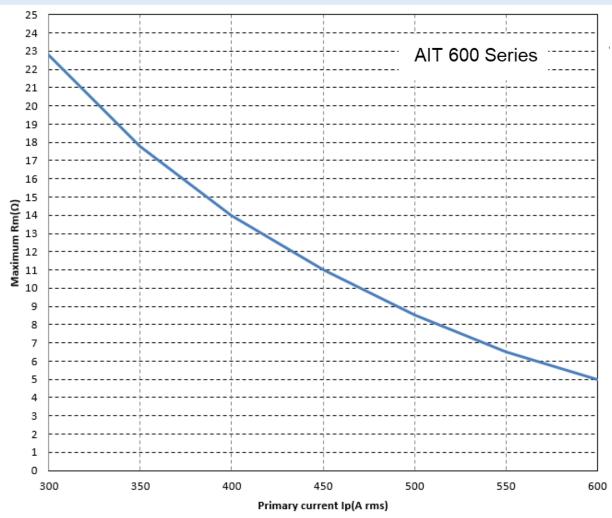
Parameter	Symb ol	Measuring Conditions	Min	Тур	Max	Unit
Accuracy	X _G	Input direct current, 25±10°C	_	_	5	ppm
Linearity	εL	-	_	_	2	ppm
Temperature stability	Tc	_	_	_	0.1	ppm/K
Time stability	T _T	_	_	_	0.2	ppm/month
Power supply interference	Tv	_	_	_	1	ppm/V
Zero offset current	lo	@25°C	_	_	1 (can be adjusted to zero by users)	ppm
Ripple current	I _N	DC-10Hz	_	_	0.5	ppm
Dynamic response time	tr	di/dt=100A/us, rised to 90%I _{PN}	_	_	1	us
Current change rate	di/dt	_	100	_	_	A/us
Frequency bandwidth (-3dB)	F	_	0	<u> </u>	500	kHz
Zero offset current	Іот	Full temperature range	_	_	±5	μΑ

Safety Characteristics

Parameter	Symbol	Measuring Conditions	Value	Unit
Insulation voltage / Between primary and secondary sides	Vd	50Hz,1min	2.5	KV
Transient isolation withstand voltage / Between primary and secondary sides	Vw	50us	5	KV
Insulation voltage / Secondary side shell	Vd	50Hz,1min	2.5	KV
Creepage distance / Between the primary and the outer shell	dCp	_	_	mm
Clearance distance / Between the primary and the outer shell	dCi	_	_	mm
Comparative tracking index	CTI	IEC-60112	600	V

General Characteristics

Parameter	Symbol	Measuring Condition	Min	Тур	Max	Unit
Ambient operating	T _A	_	-10	_	+70	°C
temperature						
Ambient storage	Ts	_	-25	_	+85	°C
temperature						
Relative humidity	_	_	L	ED on+ Low level s	signal	_
Mass	М	_	400±10	400±10	400±10	g


Shenzhen Aerospace Precision Electronics Co. Ltd.

Address: #B-531, Huayuan Science and Technology Innovation Park, Baoan District, Shenzhen City, China

Website: www.hangzhicn.cn

Telephone: 0755-82593440 Websi Service support: service@hangzhicn.cn Business cooperation: sales@hangzhicn.cn

Load Resistor Instructions

Operating Status Instructions

♦ The green indicator is on when the device is running normally:

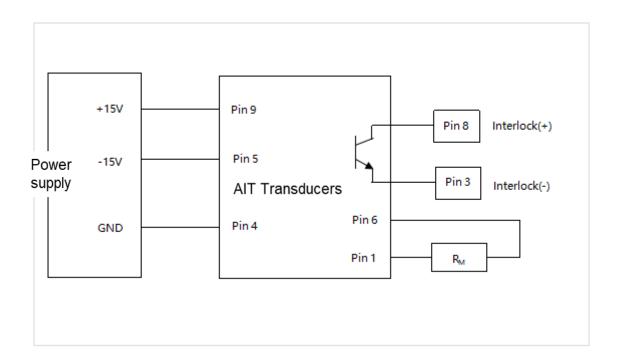
After the device is powered on, the green indicator is on when the device is running normally, and the 3rd pin and 8th pin of D-Sub9 interface are connected together.

♦ The green light is off when the current overload or power supply is abnormal:

When the green light is off, you should check whether the power supply of the transducer is normal. When the power supply is normal, if the green light is off, the current transducer is in a non-zero flux state. At this time, the input current amplitude of the bus exceeds the specified range, and the transducer enters the scanning state. The output current is no longer proportional to the input current signal. In overload mode, the output current of the transducer remains at the maximum output state and the green indicator light goes out. When the input current recovers within the specified current range, the transducer output current will return to normal and the green indicator will light up.

Shenzhen Aerospace Precision Electronics Co. Ltd.

Address: #B-531, Huayuan Science and Technology Innovation Park, Baoan District, Shenzhen City, China


Telephone: 0755-82593440 Website: www.hangzhicn.cn

Connection system

1. D-Sub9 Connection terminal pin function definition

Pin No.	1	2、7	3	4	5	6	8	9
Definition	I_Output return	N.C	Interlock(-)	GND	-15V Supply	I_Output	Interlock(+)	+15V Supply

Test instruction:

The primary current I_P can be obtained by measuring the test current I_s flowing through R_M or the voltage U_R across R_M :

$$I_P = K_N * I_S = K_N * (U_R/R_M)$$

2. Interlock Port connection description:

There are two types of Interlock Port connection based on users' actual application shown as Fig A and Fig B:

High Accuracy

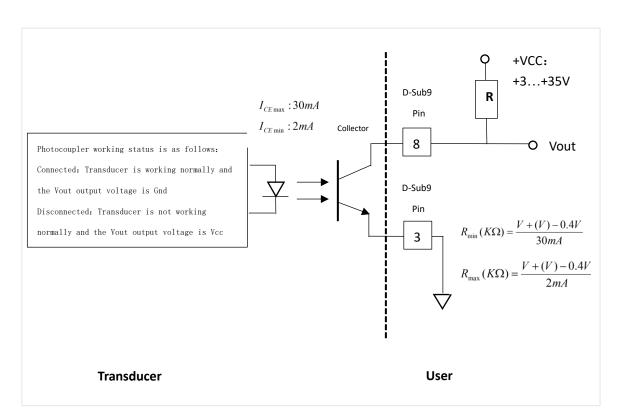


Fig A: Low level output when the transducer is operating normally

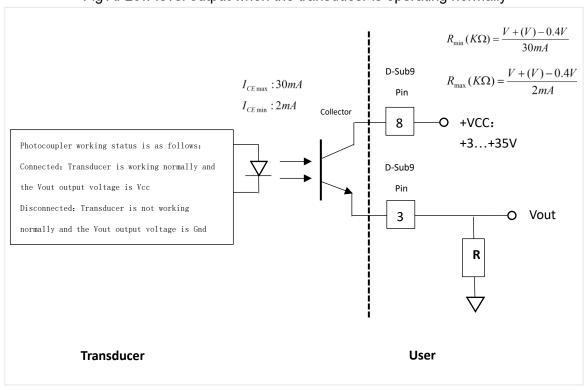
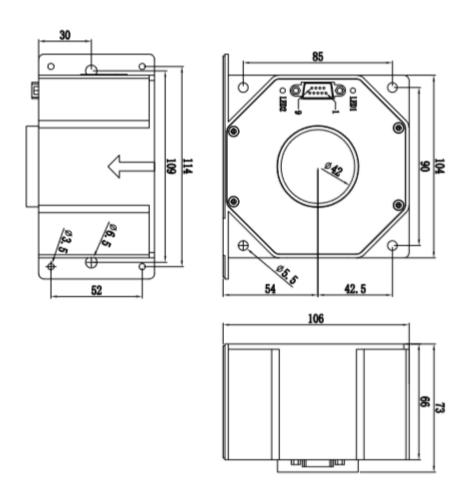


Fig B: High output when the transducer is operating normally

Address: #B-531, Huayuan Science and Technology Innovation Park, Baoan District, Shenzhen City, China


Telephone: 0755-82593440 Website: www.hangzhicn.cn

3. The output of the pin Vout in the optocoupler is related to the user-designed circuit, as shown in the following table.

Parameter	Vout	Description
Fig A	<0.2V	The transducer is working normally.
Fig A	Vcc	The transducer is working abnormally, i.e., in overload mode or abnormal power supply
	<0.2V	The transducer is working abnormally, i.e., in overload mode or abnormal power supply
Fig B	Vcc	The transducer is working normally.
•		

Dimensions

Unit: mm

